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1. Introduction

It has been observed experimentally (Schubauer and Skramstad 1948;
Ross et al. 1970) that the earliest stage of boundary-layer transition on
smooth flat plates in low-turbulence streams involves the rapid growth of
two-dimensional traveling waves known as Tollmien-Schlichting waves.
With the boundary-layer stability theory, only the growth rate of these
plane waves can be estimated satisfactorily. The necessary link between
the initial amplitude of these waves and the ambient disturbance level is as ‘
unknown today as it was 30 years ago (Mack 1977). Tollmien-Schlichting
waves can most certainly be excitable analytically. The nature of their
excitation has not yet been defined but must require, as does the excitation
of any resonant oscillation, superposition of complementary solutions (con-
ceptually provided by stability theory) and of particular solutions for
boundary-layer response to local external disturbances. Treatments of
the latter are incomplete, and more research, such as the present theory,
is needed (Reshotko 1976; Arnal and Juillen 1977).

There are three theories to explain unsteady infinitesimal disturbances
in a laminar boundary layer. In one, it is assumed that the surface is
vibrated in the streamwise direction, producing uniform oscillatory ambient
flow (Riley 1975; Patel 1973). In another, the effect of sound on laminar
boundary layers (Illingworth 1958; Mack 1975) is studied, a coupling that is
fairly well understood but has little effect in subsonic wind tunnels

(Reshotko 1976). In a third and in the present study, the effects of ambient

e —— — M = i
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convected disturbances are investigated. In these models, the freestream
turbulence or vorticity, the most influential triggers of transition in low=-
speed wind tunnels, «. e approximated. Kestin, Meader, and Wang (1961)
assumed that the waves were oriented to travel purely in the streamwise
direction. They calculated the first departure from a quasi-steady flow.
Criminale (1976, 1971) assumed that the frequency and all wavenumbers
were real and found the effect of a point source of normal velocity located
at the finite boundary layer edge. He concluded erroneously that the
largest disturbances occur in the boundary layer. Rogler and Reshotko
(1975) investigated a model in which the imposed convected disturbances

form a square vortex lattice that did not decay downstream. Their study,

as does this, indicates that maximum disturbance velocity occurs outside
the boundary layer and that maximum disturbance vorticity occurs at the
surface.

The present theory advances the field in several ways. Because it is
an asymptotic theory for very large Reynolds numbers, closed-form

expressions for maximal disturbance velocities are achieved, 1s well as

Reynolds number. The present formulae alone are simple enough that they
: can be combined later with complementary solutions from asymptotic
stability theory to explain how convected disturbances generate Tollmien-
Schlichting waves. A fundamental solution (for a harmonic line source at

a generic location upstream) is presented, thus allowing the description of

explicit parameter variations not given by numerical calculations at a finite




T Y T T P O

particular disturbance fields such as the square lattice of Rogler and
Reshotko (1975) by superposition.

Recent studies of the continuous spectrum of the Orr-Sommerfeld
equation (Mack 1976; Mardock and Stewartson 1977; Jordinson 1971; Antar
and Benek 1978; Grosch and Salwen 1978) allow disturbances of bounded
variation far from the surface. These eigenvalue searches are only
relevant to descriptions of boundary-layer response, but stability applica-
tions were expected. In these studies, a finite boundary-layer thickness

was defined and the Reynolds number was finite.
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Freestream disturbances
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A description of the external disturbance field that would exist in the

% absence of the flat plate helps to explain how the theory for boundary-layer
! response to a singl. wavenumber component (Section 3) will be developed
into physical variables (Section 4).

Only two-dimensional external disturbances are considered. Since
Tollmien-Schlichting waves (of interest for later extension of present theory)
are two dimensional, it is unlikely that the spectrum of disturbance energy
in the third (transverse) dimension is of critical importance in the initial
linear stage of Tollmien-Schlichting wave generatior. The spectrum of
energy in the normal and streamwise directions is critical for this applica-
tion, but there is not a standard spectrum in wind tunnels. The present
theory can be applied to turbulent streams by integrating the single-
frequency theory result over an appropriate spectrum.

In the present theory, the external stream is disturbed only by a single
harmonic line disturbance with a laminar wake (figure 1) like a Karman
vortex street. Of course, in the usual street scene, the vortices are dis-
crete and have interacted to form a double row. Linearity requires colinear
vortices and permits continuous shedding.

There are several reasons why this disturbance was chosen. It is the
most fundamental harmonic disturbance from a line source, and any two-
dimensional disturbance field can conceptually be generated by use of the

present result as a Green's function. This disturbance model closely

11
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simulates the effects of the vibrating ribbons used in the critical
experiments (Schubauer and Skramstad 1948; Ross et al. 1970; Kachanov,

Kozlov, and Levchenko 1976). It enables a physical interpretation of the

results (disturbance maxima are presented in Section 4 in physical variables,

rather than in wavenumber only). It also provides justification for studying

only wavenumbers whose order of magnitude is comparable with reciprocal
boundary-layer thickness.

If x denotes the distance downstream from the leading edge, and y the
normal distance from the surface, a disturbance stream function v provides
disturbance velocity components K and o A small cylinder or ribbon

(one with a width that is negligible compared to its distance from the leading

edge) is located at x_ and y

0 0 If at time to, the disturbance source sheds a

single vortex of circulation I', the vortex must consist of both a potential
vortex and a rotational core, or the vortex center will not exhibit solid-body
rotation (Rott 1964). The rotational core must be convected with the flow in
accordance with the vorticity transport equation, and the potential vortex

must accompany it, on physical rather than mathematical grounds. The

disturbance stream function in the absence of the plate then is

4
1y ‘ L S r '
L(t - tol ok~ llog_ r+3 1,1 Tt - to) ‘ (1)
where
2 : 2 "
r = [x - Xg - Ut - tol] sy - yo\ (2)
13
— - S —tTT S LT S S T TR -
s & A o g r - “.-..5_
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and El denotes the exponential integral. If such vortices are shed
continuously and harmonically, beginning at time to = 0, with frequency w

and with peak circulation addition rate I', then ¢ is the real part of

s t -iwt
¥ = %f dt0 e 4 Y(t - to) (3)
0

The real part of ¥ is assumed throughout. If T is introduced as the time

since turnon,

< - t .
) 2
oy = B dT ewT‘log[(x-x S R
4 0 0

l

(x-x-UT)Z+(y-y)2)
P E . 2 (4)
1 4T |

Only the steady-state velocity components are of interest. They are
obtained by differentiating ¥ with respect to y or x and taking the limit as
t = =, which exists. When the Reynolds number that is based on the dis-
tance downstream from the source x - X0 is very large, the velocity com-

ponents are explicitly

F(Fe Pl :
4U |i(F, + F_)| (5
+ -

eefinfe - S0

U [ou /ox|

P




.

3 where

1/2

¥ B A g TR E) .-y I
A S, - exp G (y - Yo!l °TiC 15 U . 2 v(x -~ xo)

(6)

The error is of order one over the root Reynolds number., It can be verified

that oy /dy is odd in y - Yo and 9y /dx is even in y - Yo Both decay tran-
scendentally as the magnitude of y - Yy 8rows without bound.

It is desired to examine the y-Fourier transform of these components,
because the theory tor disturbances in the presence of a plate is expressed
as the response to a single transverse wavenumber. The velocity trans-

forms are defined by

A AR R | e R

I/ x

and found to be

(y)' ‘ £ , _E 2 =1 vix - xo) w: "
fw"”‘ R ( S ) e [' § (? + )- ﬂyo](s)

The argument of the exponential function should have a real part of
order one if there is to be significant disturbance amplitude. In addition,

it is not limiting to assume that x - X0 is comparable with the distance x

i5
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from the leading edge of a plate, if a plate were present., Therefore,
i normalized frequency € and transverse wavenumber L are defined as

follows.

g i
T S P

! 4x - ar Ix = LR R - (Q) 9)

The parameters Q2 and L. are assumed to be of order one. L is real; Qis
positive. R is the large parameter in this asymptotic theory. In most
stability theories, R is the Reynolds number that is based on some
boundary-layer thickness, but here it is the root x-Reynolds number for

simplicity., With normalized parameters, (8) becomes

\I'(Y)l = ‘ LI _%}:—T exp [— (i_—)—‘gl (SZZ + LZ) = iLn:l (10)
¢®) o) urRE@®+ LY % "

where T]O is yOR/x. Thus, the laminar wake behind an oscillating vorticity

¢ source grows parabolically downstream. Its width is of order x - x, over
the root Reynolds number based on x - X This characteristic thickness
establishes the characteristic wavenumber region of interest to be that
where L is of order one. Since the exponential function argument, in square
brackets in (10), has a negative real part of order LZ, no larger |L | than

) those of order one need be considered for this type of disturbance source.

Velocity transforms for other line disturbance sources can be found.

For example, if the line source is a symmetric cylinder that oscillates in
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the streamwise direction, it may develop a periodic drag force by shedding
a vortex doublet sheet. Velocity transforms for such a source also indi~
cate exponential behavior. However, if the line source does not shed any
vorticity, but excites only irrotational disturbances, then these disturbances
die out so fast downstream that they are of no interest., For example, the
stream function for a stationary source-sink oscillator can be found, dif-
ferentiated, and transformed. The y-transforms of the velocity components

: L'R|. This bracketed exponent is a

are proportional to exp [- (x - x,) X
factor of R more negative than that in (10), where the disturbance is a combi-
naticn of rotational and convected potential flow.

In the absence of a plate, the disturbance velocity components are

recovered by taking the inverse transform

oo Xl g b
eXP\t - TT Njowrax) 2_5_/_; " g} - (11)

In the presence of an aligned semi-infinite flat plate, the disturbance
velocities are more complicated. Additional terms are needed, whose form
in the freestream can be found from the Oseen form of the vorticity trans-
port equation. Thus, outside the plate boundary layer the velocities are

given by

17




X~ X aw/ay' Lo 1 &k 1 sk
| 0 ‘ ol ily i -ily i -wy/U
exp[lw(t i — )]law/ax ‘ =i | (e B CW e

1 ‘\F(Y)l d? i2
x'\p(x)‘ (12)

where a fourth term, o« exp(wy/U), has been disallowed on physical grounds.
The terms containing Cr and Cw are for reflected and companion waves,
respectively, which are generated by the presence of the no-slip plate. For
the description of the inside of the plate boundary layer, the terms in paren-
theses are replaced by functions of boundary-layer variables (Section 3).
Use of (12) for the total external disturbances has several implications.
in the range 0 < x_ < x are avoided, it is assumed

0 0

that disturbances near x will not include residual disturbances created as

Since integrals over x

eigenmodes in the boundary layer near x, upstream. Equation (12) provides

0
the forced response, but not the eigenmodes. A description of eigenmode
generation along the plate requires a subsequent study.

Insertion of the plate on the point disturbance source wake displaces
the ambient flow and modifies the station at which the wake centerline
enters the plate boundary layer. This correction for nonparallel flow is

needed in the freestream, where x - x. is of order x, but is not needed

0
inside the boundary layer, where the flow is parallel. Outside the boundary
layer, the ambient velocity components are assumed to be (U, 0), when, in

fact, they are (U, UB/2R), where B is a constant (+1.7208) associated with the




Blasius function. Therefore, a source actually located at X and yo is moved

to the apparent location X and Yo * 8x/R, from whence the above equations

can be applied. Only when the source wake is too distant to have met the

boundary layer at x does this simple shift fail.
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3. Boundary-layer disturbances for any external source
The disturbance stream function caused by the contact of a wave of

given wavenumber with a boundary-layer edge is assumed to have the form
" ,exkx— 1wt o(T) . Exg (13)

in the boundary layer. Only one value of streamwise wavenumber k is use-
ful for given 1 and w. That value is k=~ w/U, if x - X0 > 0. Substitution
into the Oseen form of the vorticity transport equation indicates that this

is one of two possible values. The other pertains when x - Xg 0 (down-

stream source with upstream influence, a problem not addressed here).

A normalized streamwise wavenumber component K is defined:
+ L) (14)

[t is well known that a leading approximation for o(7) that is uniformly
valid for values of T up to order one can be obtained for this parameter

domain by solving the Orr-Sommerfeld equation.

5

(fr‘ - [‘%) (oh, - I\'Zo)— £y © (ikRr) ! (o.l.‘_ - 2K%0, . + K4o) (15)

|
| (it the

where f is the Blasius function, defined as mean-stream function over

(‘JUX)‘/Z.

e ——————— e — e —— B g—
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In fact, solutions of the Orr-Sommerfeld equation are valid descriptions
for any 7 less than order InQR. Fortunately, the largest Tl that must be con-
sidered that is not in the freestream is only of order (anR)l/Z. Boundary
conditions are ¢(0) = on(O) -0, and as |~ », ¢ ~ exp (iL") plus additional
waves of bounded variation.

The main advantage of the present asymptotic theory for large R is
that not all terms in (15) are needed everywhere. Thus, the following flow
layers are described separately: a wall layer, where T is of order (QR)—ilz;
the main boundary layer where Tl is of order one; an edge layer, where T
is of order (lnfﬁR)“z; and the freestream. Only the leading approximation in
each subregion is of interest. (The perturbation term of order R-1 in (14) is
needed only in the edge layer, where it provides a first-order estimate of the

contents of the first parentheses in (15). Elsewhere, K= Q.)

3.1 Wall layer: T -0 (ar)"1/?

As in the asymptotic stability theory, there is a thin layer adjoining the
surface in which the highest derivative is needed in order to satisfy homoge-

-1
neous conditions at the surface. To leading order in R , (15) reduces to

' -1
when 7 is of order (SZR)-”Z The solution that satisfies ¢(0) = oﬂ(o) =0
and that does not grow exponentially as 7| approaches order one is
1/2 1/2
0 C:-1+(1 - (%ﬁ) +exp[(-1+i> 1 (%5) ]{ (17)

22




The scale factor C will be determined by matching with the boundary-layer
function. From this sublayer profile, the transformed surface shear is

given by

o (0) = - 3 (18)

The maximum disturbance velocity component in this layer occurs in the

172

streamwise direction when T(Q2R) = 3,23, That value is

| =1.069 |C| (QR)

1/2 R
Oy,n\ax' X =

The wall layer profile of normalized oy is shown in figure 2. This minor
maximum is shown in figures 5 and 6 of (Rogler and Reshotko 1975) also.
3.2 The main boundary layer: 7 =O(1)
When both 7 and f, . are of order one, the right member of (15) can be
omitted, and the governing equation is known as the Rayleigh equation (with

phase speed equal to ambient speed):
2
(fr‘ - “(OT‘TI - Qo) - fm‘w‘Q =0 (20)

In order to match the sublayer profile, it is required that, when T is of

order one and T -0,

i1/2
¢ —0 %-.C(t-n(%‘i) (21)

23
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Figure 2. Streamwise Disturbance Profile in Wall Layer
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The scale factor C remains to be found by matching the calculated boundary-
layer profile with that in an edge layer to be described.

Numerical integration of the Rayleigh equation indicates that the
velocity components both increase monotonically in the main boundary layer
with the streamwise component always larger than the normal component.

Limiting profiles of ¢, (proportional to streamwise velocity component) are

|
(1 - f,.)'l - o f (1 - fn)_z dT Q<1 (22a)
| ‘
B WA,
071(0\

cosh 27 Q>1 (22b)

These and intermediate §2 profiles are shown in figure 3. A second
approximation in the low-frequency limit, for which (22a) is the first
approximation will be used in figure 4 and is developed in Appendix A.

At the outer edge of the boundary layer, the Blasius mean velocity and

shear profiles have an exponential asymptotic form given by

) Yq _”Z 1 =3 1.3.5
l-tr‘—v_rl_e = 2+ 22- 23+"' (23)
2H (2H7) (2H™)
—HZ
v M ] G I L e
25
- - e - “ r
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Figure 3. Streamwise Disturbance Profile in Boundary Layer
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Figure 4. Amplitude Ratio Across Boundary Layer

A




where H =(Tl - 8)/2 and TST refers to transcendentally small terms. Yy is
a Blasius constant ~0.23373. When these coefficient functions are used in

(20), ¢ approaches a parabolic cylinder function as T — ®, Specifically,

R 2 p p p
o~D1"H"' g + 12* 222+ 323+--- (25)
V2 ZH®  2E9° {(2H)
where
2
4p =2+ Z(‘C"-i)
4 2
= (- = 508 +* -
8 p, ( 5 8) Py 10
2 a* - 9n® + 22 10 7
= itk - Q2 2 - -
e Py ( 9( ) P, Py 4

and where D is introduced as a scale parameter for the outer edge of the
boundary layer. It must be related to C, its inner edge counterpart, so that
disturbances in the wall layer can be scaled. D will be found by matching
(25) with its corresponding expansion obtained from the edge layer. The
ratio C/D, obtained by numerical integration of (20), is plotted in figure 4.
Because (20) has real coefficients, C/D is real. Also shown are the low-
and high-frequency forms obtained in Appendix A.

3.3 Edge layer: T :O[ln(f;R)]llz

Equation (20) is inadequate when T becomes logarithmically large;

specifically, when H = “e’ where




!Y

. H¢
H: e © g IR > 1 (26)

There, the terms in the Rayleigh equation have become as small as the

largest viscous term in the Orr-Sommerfeld equation. H, and T 2H 4
¢ e
are plotted in figure 5.
2 2
The subregion where H™ is in the neighborhood of H is called an edge
e

layer. It can be considered to be simply a critical layer from asymptotic
stability theory in the limit where the phase speed has increased to equal

the ambient speed. The dimensionless edge-layer thickness here is much

)~ 1/3

larger than the thickness, ~ (LR of an imbedded critical layer becau

»

of the exponential tail of the Blasius flow profile. With the present theory

the edge-layer problem is solved for the first time. A previous attempt
was made by Graebel (1966), who, by truncating the mean flow profile at
y ¢, concluded erroneously that the thickness of the edge critical layer
was of order (. I{)—l/'}.

>
When H” is of order log(.'R}, the Orr-Sommerfeld equation can be

reduced to

>
S N T ¢ . SRR, P NS “HH
16 Yuman TR L e S e
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The least trivial problem results when the edge-layer variable is chosen

to be h, where

H =H_ +h (28)

and h is of order one. Then, in the edge layer, ¢ is represented as an

expansion of the form

-2 -4
<,)~oo(h) + He oi(h) + He oz(h) LT (29)

where 20 and ¢4 must satisfy

. -h |
€0, hhhh €3 (oo,hh = 00) =0 (30)

2

2 2
Pi,nhnk T 1 194y - ) = - 2ho %o, khh ~ = = T) 95

0, hkhh = 3

: -h e
- (i/2)e [(h - 1) OO,hh + oO,h - (2Q7 + MQO]
(31)

2
Equation (29) is in inverse powers of H;, but the true error is even

larger, of order H;i since the Orr-Sommerfeld equation has already omitted

a nonparallel flow term containing the third derivative. The missing term

is the wayy term from the vorticity transport equaticn. This omission
means that the parallel-flow assumption in this application carries an error

of order [log({)R)]-l/Z. A numerical estimate of the size of this error can

31




be obtained by substitution. Thus, when () is one and the x-Reynolds number
is the minimum critical value from stability theory (60, 000), [log(QR)].“2
is 0. 43. Disturbance profile shapes in other layers do not carry such a
large error, but disturbance amplitude levels do.

The Blasius function f"\T]T] for mean velocity curvature is not a valid
estimate if 7 is too large. The mean curvature is needed as a coefficient in
the Orr-Sommerfeld equation. Goldstein (1956, 1960) and Imai (1957) have
shown the error in Blasius functions to be of order R-2 log RZ when T is of
order one. It seems reasonable that the relative error in fﬂﬂﬂ' where fTATlTE
decays as exp(-HZ), may reach order one when }IZ is approximately

>

]
log (R7). In the edge layer, however, H" is only order log(C'R); therefore,

the relative error in t‘n,.n there should be no more than order roughly 1/R.

Four solutions for the fourth-order equation (30) with variable coeffi-

cients are developed in Appendix B. These are og“, o:))'), 0(03), and (2)00.

The first three are found by recognizing expansions about h = ». The

fourth is derived from an expansion about h = -®», As h — -® (boundary-
“ layer side), the four edge-layer solutions become
1) .. -h
00 ~ ie (32)

S . -h1
o) ~ie™ T [2(ie™") /2 (33)

~ (-7 + 2 + 4y) q,g” + (-6.46404 + 1 6, 76836) ¢(”

(3)
L 0

0 (34)
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where y is Euler's constant (x=0. 577).

rapidly to be separately useful in the boundary layer. These two solutions

asymptotically satisfy the differential equation

<
fo, 00k Y T 95 a0~ (36)

instead of the second-order equation
%a,hh "~ Yo =Y (37)

which is compatible with the boundary-

and for compatibility with the boundary-layer scaling parameter D, the

four solutions are combined (weighted) as follows:

0 ~ [og” F(mio- 2 - 4y) of)z’

2
v D YlnRu: 31k,

1 = j§
V2

Coefficients D and E remain to be found by matching with freestream

expansions.

As h— + » (freestream side), the four edge-layer solutions become

33

o~ @ (35)

0

In this limit, o(()Z) and ¢(03) grow too

layer expansions. For this reason,

+ (6. 46404 - 1 6. 76836) QE)“]

(38)




(1)
?0 ~ 1 + TST
¢§)2)~h + TST

¢§)3’ ~h% + TST

; 3 2
oo~(1/3)h +e2h - eih +e0 + TST

(2)

(39)

(40)

(41)

(42)

where eqgr €4» and e, are constants that are given in Appendix B. Then, the

leading-order solution can be written

3 2
o0~ f3h + fzh +f1h - fO + TST

where

1 +i CZ -3
f3 - D—‘7=—3 s (Yl”RHe )

~2
1 § - s
i, =E+D 7z leRH; e,
§ ey 6" =3
% i 2. el ol -
f1 E (ti-2-4y) +D \/Z Yy RHe ey

2
. i I 3 i~ ».3
fo = E (6. 46404 - i6.76836) + D~ v,© RH‘; e
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(44)

(45)

(46)

(47)




by

Solutions of higher order were not sought: nevertheless, from (31) and a
corresponding equation for 9 the asymptotic behavior as h — @ can be

established to be

5 4
v 2 2. h 2 A 1 5
o4~ - bf3 (L™ - Q )—5,. - [18f3 + Zfz (L™ - Q )] T + cubic (48)
7 () ()
4 2.2 4 h h 2 2. h
== (% 9! = — - Q) — inti
02 (L @ Es &4 )(61"3 7 + Zf2 6') + 42f3 (L Q) 51 + quintic
(49)

3.4 Freestream: T - T’e = O(1)
Equation (27) contains the few terms needed in the ambient flow where

the differential equation has constant coefficients:

- B - S
oymyy + (L7 = 07 opg - O L =0 (50)
The solution desired is
iLT iL(m-"m -1L(T - Tle) -Q(n - Tle)
e fe = +C e +C e (51)

The parameters Cr and Cw are more convenient than Cr and CW used in
(12). The coefficient of the first modal function [exp (iLT)] has been nor-
malized as indicated after (15). A fourth modal function [ ~ exp(@QM)] has
been omitted in order to satisfy the other of two boundary conditions at «;

namely, that ¢| not grow with Tl in the freestream. The second and third
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modes retained can be interpreted as a reflected wave of relative amplitude
Cr to be determined and a potential-flow response, which is a streamwise
wave entirely. Lack of decay as '/ — ® in the amplitude of the reflected wave
is acceptable because the exponent depends on wavenumber, which is the
integration variable for the inverse Fourier transform.

In order that the edge-layer expansion given by (29), (43), (48), and (49),
match (51), the edge-layer expansion is written in the freestream variable

M -7 by means of
e

1 2 :
5 2 A G ¥
ho=H (=70 +(3) ) (52)

©

Upon substitution, the edge-layer expansion becomes

4 < {

oo LR R L R 6 oL
p = §ebfy (L™= 0°) 5 [He(-:- )+ Hy (1-T) *]

: % o . [, T o B el 3a R
o~t;[llc( - ‘e) o=kt AN =N ‘---j‘t:l{c(u- ‘e' Foeoe e

2 2ZYiLA.. . A I
[18f3+2fz(1.. -Q )}4—1[“&" W .]‘

1 Al T o ¥ o 8
*7' etk +n)ﬁ[ne‘1nv) fgHOM=T0) +]
€
PO T BRI T T T
+?.fz(1_, - Q7L +“)?>_'.“e(' -v.c) b
2 2.1 b 6 |
+ 4Zf3 (L - Q )37 He (n - We) *e 5wy ¥

(53)
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Only two orders Hi and Hi have been retained because only the leading-

order solution in Appendix B was developed, and higher-order solutions
appear at the next order. Equation (53) must match the expansion of (51)

for small 7} - Ue. which is

k
LY o (%= 1)
-k T Lk
o ~e ‘“’E —r— [(xu +(-iL)" C_ + (-0) cw] (54)

o

. el D 1
Since (53) does not contain terms containing (71| - Tle) or (1] - T’e) , such

terms in (54) must vanish by a proper choice of Cr and Cw’ thus

H+iL Vel ) 29

Cr el 0 Cw Q- il (55)
In addition,
5 iLT|
f, =iH_“L{Q +iL)e i (56)
and
LX Lk iLT,
f3 = —(3) He QL (0 + 1L) e (57)

were chosen to match powers of (7] - T|e)Z and (7] - T|e)3. Higher powers
(four through seven) also match to leading order. The asymptotic

variation of the higher-order functions ?4 and ¢, was unnecessarily

2
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displayed in (53) as a confirmation of the adequacy of the matching

procedure. Substitution of (56) and (57) into (44) and (45) indicates that

-2 iLne
E~fz~iHe L(Q +iL) e (58)
T iLT
D~_1+21 QL (Q +1I£) i e (59)
Ix Q
vq© RHe
and that none of the constants €, €y, Or e, is needed.
When coefficients E and D are replaced in (38), in the edge layer proper,
where of)” are all of comparable magnitude, the term with E is theoretically

larger than that with D, by a factor of the ''large'’ parameter He. Thus, E
scales the edge-layer disturbances, and (C/D)D scales disturbances in the
boundary layer and sublayer. The leading-order edge-layer solution, from
(38) and Appendix B is, therefore, the closed-form expression

0 h/2

2 = (6.16404 - i6.76836) (1 + fe Ty 4 Fize R 2y (60)

where f(x) is given by (B-37). The magnitude and phase of oO/E, which is
proportional to the transverse velocity component, and °0,h/E’ which is
proportional to the streamwise disturbance velocity component, are plotted
in figures 6a and 6b, respectively. The maximum disturbance velocities
occur in the freestream, not in the edge layer. Further, the vertical com-

ponent of disturbance velocity, which was numerically negligible compared
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to the horizontal component in the wall layer and main boundary layer,
finally becomes comparable with the horizontal component and may exceed
the latter in size in the outer portion of the edge layer, depending on their
relative scales.

Figure 7 is a composite plot of the streamwise perturbation velocity
profile in the three layers into which the steady boundary layer is divided by
this asymptotic theory. o7 (which depends on y but not £) is multiplied by
a transform \l/(y) (which depends upon £ but not y) and then integrated over £

(

to obtain a dimensional velocity. The integral of ¥ y) df serves merely as
a scale factor, one that depends on the nature of the external disturbance.
The specific relationship between the three sublayer profiles depends only

on Q, R, x,, and Yo Experimentally obtained profiles with a vibrating

O'
ribbon (Kachanov, Kozlov, and Levchenko 1976) and numerical results with
a convected lattice (Rogler and Reshotko 1975) (figures 5 and 6) both exhibit

the features of this composite profile, i.e., a slight overshoot in a thin sub-

layer and very rapid growth with increasing distance from the surface.
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Figure 7.
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4. Results

Disturbances in the presence of a semi-infinite flat plate, generated
as described in Section 2 by an external oscillating source of vorticity (and
limited to the forced response as opposed to eigenmodes), are plotted for
two locations: the freestream and the wall-layer edge.

In these applications, it is necessary to adjust the disturbance scale
ditfferently, depending on which disturbance velocity component is desired.
Specifically, the transverse disturbance velocity in the presence of the

plate is

(e¥}

X 2m

=~ ol e (x) (R
exp iw(t - —E——-—> sk o o(T) v =) (;\) dL (61)

-0

since the limit o(7)) — exp (1LT)) plus bounded terms is required in the free-
stream and since du/dx is proportional to ¢(7]) rather than its derivative.
The streamwise component, dv/dy, proportional to o is obtained from

(51) of Section 3. In the freestream, the form

2ilLWl = 3LM QC (22 4 iL)UC -
e W Q ,
> - e (62)
15 il

is compatible with (11) if the streamwise component is

X - X o O
s 0| av | I _(y) (R
= 2 e 03 3
exp [lw(t T )i\ e - T g (x ) dL (63)
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Equations (61) and (63) correspond to (11), which applied in the absence of
the plate.
4.1 Freestream profiles
Profiles of disturbance velocity components in the freestream are
desired both for comparison with recent experimental profiles obtained
behind a vibrating ribbon (Kachanov, Kozlov, and Levchenko 1976) and
because disturbances there are the largest. The combination of (51), (55),

and (61) through (63) resulted in the closed-form profiles:

>
QB (Y=To)+8, (T+Y, -2¥
u [lawsay | 71L0‘1( ol * 5 g~ J
~ (/o # F .Y P4 Y, = 2%
 {(ow/ox| (Cl (X-¥ J+0, (T4Y,-2¥ )]
PE 0 * et e LT i 7
+2[C (Y +Yg-2Y )-Cy (Y+Y-2Y )-8, (Y+Yy-2Y)]
=X )
’ 3 o P T
+ 2e [<C (%5 =¥ I+ Co (¥ - ¥ )4 8,(¥, - ¥ )]
(64)
where
- S [ )
.OE\U \,(—‘—%—9) Y:\(—Jt (65)
9

and where (‘.1, Sl, G SZ are integrals defined by

C, (x) = -:ét& ‘ cos (xt)'
‘ k ' / Dt dt (66)

[s,0f %« [t sin (xt)f

o
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and evaluated by parameter differentiation. The closed-form results are

>
C (x)' PPy -
‘ 1 L 0 ~X = 3 \ ’ X = (\ x)
— e e erfc|Q, - =—=— e erfc(Q, +5— (67)
lsi(x!‘ 4 ( 0 “0) l_‘ 0 ZLLO

Q s
2 i x| o 1/2 ("0
(: (\) (—4.0 + E) (,1 (?\) +(E) 51 (x) + W (_l— Cxp - —?(? (68)
4&4.0

s
S, (x) = -0y Sy (x) + (%) Cy (%) (69)

Streamwise perturbation profiles are compared in figure 8 with

experimental measurements obtained (Kachanov, Kozlov, and Levchenko

1976) behind a vibrating ribbon in the presence of a plate. As described in

a lecture at Virginia Polytechnic Institute, the experiment was performed at

a frequency ot 114 Hz and an ambient speed of 532 cm/sec. The ribbon

location was not specified. (Its location is not critical, and it has been

1

assumed to lie above the leading edge.) The mean boundary-layer "'edge’
|

and surface were located at 5, and S, respectively. The theoretical Yo = Yo

(the minimum coordinate plotted) was optimized. The arbitrary amplitude \

scaling is the same at all stations.
Figure 8 indicates that the characteristic diffusion width is only half of

the theoretical value and that the decay is much more rapid. Since these

discrepancies would also occur in the absence of a plate, either (5) is wrong,

which seems most unlikely, or the experimental frequency must have been
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twice the reported 114 Hz. If it is the latter, quantitative as well as
qualitative agreement could be reported.
4.2 Wall-layer-edge disturbance amplitude

Infinitesimal external disturbances can only cause boundary-layer
transition to the extent that they excite boundary-layer instabilities. Since
Tollmien-Schlichting waves, i.e., two-dimensional eigenmodes, travel at a
phase speed of about one-third the ambient speed, corresponding to a
critical layer (of asymptotic stability theory) located near 1| = 1, as much or
more interest must be focused on the forced-response disturbances of rela-
tively small amplitudes near Tl = 1, as in the very much larger amplitudes
in the freestream. In this central portion of the main boundary layer, the

streamwise component is always much larger in magnitude than the

transverse component and is found (figure 3) for any 1| once the value at the
wall-layer edge is known. A plot of the wall-layer edge disturbance is
useful therefore .

From (21), (59), and (63),

3 1/2 Ll
] lé&l _(e/myer)!/ fw(n rirje e ap (70)
i Iy | » _ Sl
=0y, xH" iy
Yy X 8

"

T
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Equation (10) then gives

u ‘_oii _c/m@rtf Yo Y| (Q Yo - Ye)
= 13 . 2 ERYe T T
&1 =0 2y. R 0
Yq e
2

o exp|- (Q - ————YO : Ye) (71)
NE QO 0 ZQO

Because the two parameters of the right member QO and YO - Ye mingle
frequency and position, they are replaced for graphic purposes with
parameters that do not. These are Uxo/v. Uyo/v, and t.v.)\)/U2 (which is

equal to Q/R). Then,

Uy
3, = =% R . 8 Yo - ¥ :‘”—VZ< 2 .« ®Y (72)
U v e U \Y) e

1/2

Also, (C/D)(QR) is a function of the RZ (u)\;/UZ)2 given in figure 4, and
H, and T]e are functions of Rzu.)\,»/U2 given in figure 5.

In figure 9, the disturbance source has been located as far upstream
from the leading edge as an observer is downstream from the leading edge,
if his local x-Reynolds number is 105. The location and the frequency
selected are simply representative. The curves in figure 9 then are those
that an anemometer should be able to mecasure if it were located at the wall-

layer edge and translated along the plate. The figure indicates that, if the

source is located in line with the plate (Uyo/v = 0), the amplitude decays
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monotonically downstream. If the source is located below the plate, e.g.,
UyO/v = -1000, the amplitude in the boundary layer above the plate is
greatly reduced. If, however, the source is located on the proximal side so
that its wake enters the boundary layer near the stations observed, the
amplitude peaks at a finite Reynolds number. (Generally two peaks should
be expected, corresponding to the two lobes of the disturbance in the absence
of the plate.) The further the plate is from the source wake centerline, the
smaller the characteristic disturbance and the greater the Reynolds number
of maximum disturbance.

In figure 10, the source has been fixed, and the frequency parameterized.
For a station where Ux/y =~ 3 X 104, the maximum disturbance for u.)\)/UZ -
1073 exceeds that for both uw/U2 =550 10-4 and 3 X 10—3.

In figure 11, the observer and the source are both located a distance
10‘5 v/U from the leading edge. The effect of varying frequency is shown.
For Uyo/\) greater than 1000, there is clearly a favored frequency (if
perturbation of the boundary layer at that station is desired) or a frequency
range to avoid (if a quiescent flow is desired). This behavior indicates the
possibility of ""detuning' a wind tunnel, perhaps by redesigning the turning-

vane chord length to avoid these particularly effective frequencies.
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Appendix A: Limiting forms for (C/D)(QR)1

The differential equation for disturbance stream function (20), can be
solved in both the low- and high-frequency limits. The low-frequency

result, which can be verified by substitution, is

O e 207 2 )
Gilly + & 1= £ (T GM ) [GM) - G(M )] ATl 4+« -
[OT‘(O)(l ~ fv\)] (M) + L’{ [ "( lO)] (no [ ( ( O] "

where

T] 2
G(‘_);/ [1 - fr(TIO)] dTl
0 ‘

) i

For evaluation of the ratio (C/D) (QR) , the behavior of ¢ as T| = = is

needed:

Ul

0 Nﬂ\ ;\2/' . 2 o T_' -2
[on(O)(l ‘fn’] ((nl1 + 0 ; 1 f,(no)] Gl |o)dlo‘[1 + O(H™ 9]

where H - (1| - B)/2. The indicated integration is singular because G(T)

behaves as

G(Mm~ M-8 "t - fn)'z LRI

Accordingly, for large T,

L 2 -2
’4 [1 - £ )% G(T ) dTl ~ logH + ¢ + O(H™")

o3

2y -




where ¢ equals the finite part plus log 2. Specifically,

—f2[1 £ (M )]% G(1) an +fm‘[1 e e - @ -8t
C—O = o "oozl-ﬂo o [~ o

+10g(2%8)

Numerically, ¢ = 2.125. Therefore, at low frequencies near the outer edge

of the boundary layer,

2 2
LTTTT(ﬂN(ZYi’—l el [1 +0% (logH +¢c) +-+]

1 of u

~(2\'1)- H' e [1+co‘7‘+...]

The use of (21) and (25) then gives the boundary-layer amplitude ratio as

(%) @r /2 - (2y,) (1 - s ol R o« 1. (A-1)

For high frequencies, the cosh(Q') solution, (22b), is not uniformly valid
because the third term of (20) becomes important when H = (T - B)/2 is
of order (. Since the edge layer (Section 3. 3) adds viscous complications
when H is of order [In (ﬂR)]i/Z, the parabolic-cylinder behavior, (25), is
only relevant if DZ < In(QR). Equation (25) is essential for the determination
of (C/D) (QR)l/Z, thus, this ratio will be obtained for moderately high

o
frequencies 1 << (0"« [In(QR)].
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In the notation of Abramowitz and Stegun (1966) when H is of order
Q, ¢ is a combination Clyl(T‘. - BY + Czyz(ﬂ - B) of parabolic cylinder func-
tions y, and Y, with parameter a = 0% + 1/2. The cosh(GT) solution for T
of order one will match this if C1 is on(O)exp(QS)/(ZC) and C2 is
on(O)exp(QE)/Z. It remains to express y, and Y, in terms of standard solu-
tions U and V, so that the asymptotic behavior of Yy and y, can be found.

Since U « V for large arguments, only V is retained.

ol TV
1 D r\z /
rairz+ 12y 28 * 82
Vv
¥or ™ e
e
2 F g
v o172 00172 0f H

The use of these and Sterling's formula provide

¥
o L1712 08 ,(1 +0%)/2 HQZ 2
©-(0) %

| CZF(UZ/Z)

which with another application of Sterling's formula provides

2

z 2 =
(%) @R} ~ exp- @272 + ap o T 7@ -1/2)

The limiting forms (A-1) and (A-2) are plotted in figure 4.
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Appendix B: Edge-layer solutions

Four independent solutions were sought for the edge-layer equation

2 - 9g) = 0 (B-1)

$o. phkn T 0, hh

(1 (2) (3)

The first three of these, %9 + %0 and 9g were obtained by recognizing

the series expansions for large positive h.

1(1 h

n0)~1*O(e_ ) (B-2)
og‘” Y T (B-3)
05)3)—\ B+ OhCe ™ (B-4)
Then, the functicn,
OE)“ TR R (B-5)
is an exact solution,and
¢E)2) —h+ie M (h+4)+ i —————————(;e-h’k (B-6)

5 (kD) k(k - 1)

5 _ S ——————————— —
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Kelvin functions in the form

(B-17)
P
(k)
-1
€ ]‘ 1/2 )dt © —h)k )
/ 1 - IO [2(it)" ") T _Z _-_ISZ__ (B-8)
0 1 (kL)Y k
o -h k
h 1/2 1/2 -
R i T T I 5 (B-9)
T [(k - 1]k
are used. From these,
7, - &
oy = hrie™ (h+ )+ o[22 (B-10)

is found, where

o) Z

, Z dt 7
Qu(z) =1 - T (2) + 2 (1 *T) -[o [1-T,®]F +5 3,20 B-11)

o
\

Similarly, the series representation of 02)3‘ is

o TR
02)3):hz'~ie (h ‘8}1418)622 (‘e

= (kD)°k (k - 1)

k
[(h + 1 + dy)

+2y(k+1)+-1—+k}1]

(B-12)
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where y is Euler's constant and v(k + 1) is the psi (digamma) function. Bv

means of a series manipulation,

@ sk '
Z(-lw)z pler ) 2 ‘Yo 2wt ?] - a2y, o
> (kD k(k - 1) l ‘
. (% Inw+ ‘4—“-) :.10 [zuw)”‘l] - i T2 Ty [2(‘1“)”211

D

AR
: 2(iw) ‘ - t l dt
2(1 + Lw)f it \'O(t) + (ln -2-) Jo(t) - \f‘ <
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From these equations,
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is found, where
Qz(z,) - [YO(I,) =3 \1(2)] 2 (ln 2) [JO(/.) > Jl(z)] (1 + 2vy)

4 2/‘2"&1\. )+(1 t—)r s ft[i T
~(+z)0'~Z ot nz~o(t),y-0 -Os)]

Solutions 02)2) and 083) will be combined and simplified in (B-36) and (B-37).

(4) 3

An attempt to find a fourth series By h™ +...was abandoned in favor

of asymptotic representations of o, as h — -®, [Equation (B-1) should

0

possess two solutions that asymptotically satisfy the ""inviscid' limit, where

the difference ° hh - %0 vanishes. Thus, solutions are sought of the form
’

(1) -h | & hk -
99 ~ € - Z a e (B-17)
0
h &
(2) ~e hk (B-18)
00 ; bk ©
(5 . : s () g (1

0g 18 simply -iog which precludes )00 from being the fourth indepen-

2
dent solution desired. Thus (")o is needed. It has the asymptotic

0

expansion

[o5]

(2 : rk-ul 1k .
lzl: o (xc) (B-19)
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Because this series was unrecognizable, it was necessary to work with a

related function ¢ defined by

[Se] ’ k

3= B g o = -2121: [k - 1)1]° (LW) (B-20)

where w is exp (-h) here and below. Now ¢ satisfies the second-order

equation
2 o ’
w & + wd +iwd = 21 (B-21)
ww w

with complementary solution

12 (1)

/2
0 ]

& AJO[Z(iw\ ] + BH [Z(iw)1 (B-22)

(1)

”0 is used rather than YO because it is directly expressible in Kelvin

functions:

7 >
Jo [z(iw)”“] - ber (zw“2> - i bei (zwl/“) (B-23)
% H:)“ [Z(iw)i/z] ker (2\.\'1/2) - i kei (.lwl/z) (B-24)

A particular solution of (B-21), obtained by the use of an indicial function and

Duhamel integration, is
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p ‘ 1/2 (1) 1/2, dt
@p__g"' o [2(iw) ]f Hy ' [2(it) ]

1 | id .
- Hf) ) [2(iw) /Z]L JO[Z(lt)l/z] %t—: (B-25)

By the adjustment of the coefficients A and B of the complementary func-

(1)
0

is =, For JO' any parameter a is chosen. Then, the sum <I>C + <pp provides:

tions each lower limit in (B-25) is set separately. Most convenient for H

O

) S w ' N e e
M (f Sl bk BN 1%)%

a

S = 2 :Jon(iw)l/Z]f “)[Z(lt)l/zlﬁ

(B-26)

where FP denotes the finite part of the integral. Two quadratures then

provide the fourth independent solution:

Yo 4 dw
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B.1 Limit h — @ (outer edge)
Asymptotic forms for le), q:gz), and QE)” are shown in (B-2), (B-3),
and (B-4).

Use of the expansions

0]

W
: i -
f Hg)“ [th)l/z] % A 2—1"‘ (lnw)2 +(% kA ‘rrl) Iln w

| .
. pr “2) 12662128 ¢ O fw 1 w)
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(B-28)

W d
f Jo[z(it)”Z]‘:—t~1nw-FP J [.2('11:)1/21%£

0 + O(w) (B-29)
a 0

results in the following representation for &:

® i T
& ~ih® + 2ih dfp 4 [Zn I"Pf gt l pary 5 22

. = - (n 4 idy) dfp] + TST
0
(B -30)
where
» 1/2, dt ® 1/2, dt
dfp - rpf JO[Z(it) 1=+ H>f I (260 ) = (B-31)
0 t 5 0 t

2 : . : :
The two quadratures of ®/w" then result in the asymptotic form desired, i.e.,

@y, _f1) .3 2
%0 (3) h +e&h +cll1090 (B-32)




8, = -i[1 - dfp] (B-33)
‘ Ll || 1 d
ey =2i {1 - dfp] + 2n pr Hg ) [2(it) /2] Tt - (m + idy) dfp (B-34)
0
0 -h h, h
2 o RO f 1/‘1 2
eg = FP "'g, = FP 2 e ; e © ®(h,) dh,dh, (B-35)

Although all three e, can be evaluated, they have not been, because they
are not needed for zero-order matching. The coefficient i/3 of the cubic
term in (B-32) is needed, which justifies obtaining (2)00 and its limiting

form shown.

B.2 Limit h — - (inner edge)
From (B-5) it is clear that as h — -=, og“ ~ i exp(-h), and, from (B-18)
T that (Z)oo ~ exp(h). Examination of (B-11) indicates that OS)Z) grows as
h — -® much more rapidly than exp(-h).
{ The same is true for 083). There is, however, a linear combination of

2
08“ and 033) for which this rapid variation cancels. That combination is

¢ (ri - 2 -ay) ol (B-36)
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Hx = Ze_h/z. f can be written as

2 .
fix) = {4+ 2x") [].n (%)] 5 Ln(§) [4 PR E—E—“Yl]

xZ d
= (—4_) (w + 21 + 4yi) ~ (4 tox g [kr(x) - i ki (x)]

X
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=2 (4 + ix“)f t . [kr(t) - i ki(t)] dt (B-37)
0

where

kr(x) - iki(x)s(%&) Hg“ (xem4) + In (%) +y-in/4

The integral in (B-37) vanishes as x — 0, since kr(x) - iki(x) is of order

! .
x" In x. FEquation (B-37) does not contain any of the JO (erM) terms that

2) (1) im4
0

2 3) ge
caused o(() and o( to become unbounded for large x. Since H (xe )

0

vanishes for large x (the inner edge), an asymptote for f that is merely

exponental in h is left.

{= og“ (¢, +ic)+ ote™ (B-38)

where

0

1 ©
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1 ®
Ci:8f t-i[kei(t)+-}] dt+8j t-1 kei(t)dt + m (2 1ln2 + 1)
0 1

(B-40)

Numerically, c. and ¢, are -6. 46404 and 6. 76836, respectively.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems, Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
labaratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-

fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser <'emistry, propulsion chemistry, space vacuum
and radiation effects on materia’s, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics: quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging: atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Developrnent of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-

5 tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields: space astronomy, X-ray astronomy; the effects of auclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems,
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El Segundo, California




